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Abstract 

In the preceding article, the general solution of the 
Darwin equations has been obtained for a mosaic crystal 
slab for both the Laue case (transmission geometry) and 
the Bragg case (refection geometry). This now allows 
the calculation, for the first time, of the reflectivity of an 
absorbing crystal of finite thickness in situations where 
the Bragg planes make an arbitrary angle with the 
surface of the crystal. In this paper, these results are 
applied to a numerical calculation of the reflecting 
properties of a number of commonly used neutron 
monochromator crystals. The incident-neutron flux is 
taken to be Maxwellian with an epithermal tail and it is 
investigated how the various properties depend on the 
neutron wavelength, the crystal thickness, the mosaic 
spread and the angle that the Bragg planes make with 
the surface of the crystal. It is found, for example, that 
for asymmetrical reflections gains in flux of 25 to 50 % 
or more can easily be achieved for a wide range of 
wavelengths in crystals with the kinds of thickness and 
mosaic spread that are available in practice. 

1. Introduction 

In the preceding article (Sears, 1997, hereafter referred 
to as paper I), we have obtained the general solution of 
the Darwin equations for a mosaic crystal slab for both 
the Lane case (transmission geometry) and the Bragg 
case (reflection geometry). This now allows us, for the 
first time, to calculate the reflectivity of an absorbing 
crystal of finite thickness in situations where the Bragg 
planes make an arbitrary angle with the surface of the 
crystal. In this paper, we apply these results to a 
numerical calculation of the reflecting properties of a 
number of commonly used neutron monochromator 
crystals: aluminium, copper, germanium, silicon, 
beryllium and pyrolytic graphite. 

In particular, we have calculated the following 
quantities: reflectivity, figure of merit, reflected flux, 
optimum thickness, order contamination and Fankuchen 
gain. The incident-neutron flux has been taken to be 
MaxweUian with an epithermal tail and the effective 
neutron temperature was chosen to simulate both a 
thermal source and a cold source. The attenuation 
coefficient included contributions from true absorption 

(e.g. radiative capture), incoherent scattering and 
coherent inelastic scattering. The quantities listed 
above have been calculated for the most commonly 
used Bragg planes (hkl) and we have investigated how 
they depend on the neutron wavelength 4, the crystal 
thickness d, the mosaic spread A0 and the angle c~ that 
the Bragg planes make with the surface of the crystal. 
For asymmetric reflections (where 0 < ot < 90°), we 
have examined both compression and expansion geom- 
etries. Owing to space limitations, we cannot report all 
these results in detail but we present a representative 
selection that illustrates the general features of the 
results that we have found. 

Neutron monochromator crystals are normally used 
with symmetrical reflection geometries where the Bragg 
planes are either parallel or perpendicular to the surface 
of the crystal. We find that for asymmetrical reflections, 
with ot in the range 10 to 30 °, gains in flux of 25 to 50% 
or more can easily be achieved for a wide range of 
wavelengths in crystals with the kinds of thickness and 
mosaic spread that are available in practice. Previous 
theoretical studies of this effect have been confined to 
infinitely thick crystals and the effect of secondary 
extinction on the gain was neglected. 

2. Bragg reflection in monochromators 

We begin in this section with a brief phenomenological 
discussion of the Bragg reflection of neutrons from a 
monochromator crystal in order to derive expressions 
for the quantities of interest in terms of the reflectivity 
that was calculated in I. 

2.1. Incident beam 

In I, we assumed that a collimated monoenergetic 
beam of neutrons was incident on the crystal. We now 
relax this assumption by considering a collimated 
polyenergetic beam. Then the total incident-neutron 
current (neutrons s -1) can be expressed as 

oo 

I = f i(2) d2, (1) 
0 

in which i(2)d2 is the incident-neutron current in 
d2. The corresponding incident-neutron flux 
(neutrons cm -2 s -1) can be expressed similarly as 
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OO 

J = f j(2) d2, (2) 
o 

so that, if S is the cross-sectional area of the incident 
beam, 

i(2) -- Sj(2), I = SJ. (3) 

Finally, the incident-neutron spectrum will be defined 
a s  

f(2) = i(2)/I =j(2)/J.  (4) 

Then, f(2) d2 is the fraction of incident neutrons in d2 
and has the normalization property 

OO 

f f ( 2 ) d 2  = 1. (5) 
0 

2.2. Bragg reflected beam 

If the incident beam makes an angle 0 with the Bragg 
planes then the reflected-neutron current can be 
expressed as 

OO 

I'(0) = f i'(0, 2)d2 (6) 
0 

and the reflected-neutron flux as 
OO 

J'(O) = f j'(O, 2)d2. (7) 
0 

As in (3), 

i'(O, 2) -- S'j'(O, 2), I'(0) = S'J'(O), (8) 

in which S' denotes the cross-sectional area of the 
Bragg-reflected beam. 

2.3. Reflectivity 

The reflectivity R(O, 2) is defined as the fraction of 
incident neutrons of wavelength 2 that are Bragg 
reflected when the incident beam makes an angle 0 
with the Bragg planes. Thus, 

R(O, 2)=i'(O,)O/i(2)=(1/ff)j '(O, 2)/j()O. (9) 

Here, ~- is the Fankuchen factor, 

9 = S/S' = sin ~0/sin ~o', (10) 

in which ~o denotes the angle that the incident beam 
makes with the surface of the crystal and ~0' the 
corresponding angle for the reflected beam (see Fig. 1 
in I). The net reflectivity is then given by 

OO 

I ' (0)/I--  f R(O, 2)f()o)d)~ (11) 
0 

and the corresponding flux ratio by 
o o  

J'(O)/J = ff f R(O, 2)f(2)d2. (12) 
0 

The preceding equations are all essentially defini- 
tions. The physics is contained in the Darwin equations, 
which show (a) that the reflectivity R(O, 2), as defined 
by (9), is an intrinsic property of the crystal, 
independent of the incident beam, and (b) that R(O, 2) 
is different from zero only if 2 and 0 satisfy Bragg's law 
to within the range of values allowed by the mosaic 
spread in the crystal. In short, 

R(O, 2) = 0 unless ,~, ~ J'max sin 0, (13) 

where 

'~max = 4rC/ghkl, (14) 

in which g h k  l denotes the magnitude of the reciprocal- 
lattice vector for the Bragg planes (hkl) under 
consideration. 

In what follows, 2 and 0 will continue to denote an 
arbitrary wavelength and Bragg angle, while 20 and 0o 
will represent a pair of values that satisfy Bragg's law 
exactly: 

/~0 = '~max sin 00. (15) 

2.4. Rocking curve 

Suppose we have a collimated monoenergetic inci- 
dent beam of neutrons with wavelength 20. Then, 

f(2) -- 8(2 - 20). (16) 

It now follows from (11) that 

I'(0)/I = R(O, 20) (17) 

and from (12) that 

J'(O)/J = ~R(O, ;~0). (18) 
The relation (17) is just the rocking curve for the 

reflection hkl and the reflectivity R(O, 2o) can be 
calculated from the solution of the Darwin equations 
given in I. For qualitative purposes, we can think of the 
reflectivity as being sharply peaked at 0 -  00 with a 
maximum value given by 

R o = R(O o, 20). (19) 

The integrated reflectivity is then defined as 

p(2o) = f R(O, 20) dO = R 0 A0, (20) 

where A0 provides a measure of the width of the peak 
and, hence, of the mosaic spread in the crystal. 

2.5. Figure of merit 

Suppose, on the other hand, that we have a collimated 
polyenergetic incident beam of neutrons that makes an 
angle 00 with the Bragg planes. It then follows from (12) 
that 

o o  

J'(Oo)/J = ff f R(Oo, 2)f(2)d),. (21) 
0 
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Here, R(0 o, 2) is sharply peaked at 2 = 20 while f(2) is a 
slowly varying function of 2 that is.essentially constant 
over this peak. Hence, 

J'(Oo)/J = Mf(2o), (22) 

where 

and 

M = ffp(00) (23) 

p(Oo) = f R(O o, 2) d2 = R o A2. (24) 

In this equation, R o is the peak reflectivity (19) as before 
and A2 provides a measure of the wavelength spread in 
the Bragg reflected beam. 

In can be shown that, to a good approximation, the 
reflectivity R(O, 2) does not depend on 0 and 2 separately 
but only on the difference 2 - ~ ' m a x  sin 0. It then follows 
that 

p(Oo) = 20 cot 0 o p(2o) (25) 

and, hence, that 

A2 = 20 cot 00 AO. (26) 

The flux ratio (22) is the product of a factor M, which 
depends only on the crystal, and a factor f(20), which 
depends only on the incident beam. The quantity M will 
therefore be called the figure of merit of the crystal for 
the particular reflection under consideration and can be 
expressed in the alternative form 

M = 9R o A2. (27) 

2.6. Incident-neutron spectrum 

For a hypothetical source in which the neutrons are in 
true thermodynamic equilibrium at temperature T, the 
velocity distribution of the neutrons is Maxwellian and 
(Bacon & Thewlis, 1949) 

f(2)  = (224/25) exp[-(2r/2)2]. (28) 

Here, 2 r denotes the wavelength of a neutron with 
energy ksT so that 

2 r = h/(2mksT) 1/2, (29) 

where m is the neutron mass. The incident-neutron 
spectrum f(2) is then a maximum when 2 = (2/5)1/22r . 

The neutrons in a nuclear reactor are not in true 
thermodynamic equilibrium with the moderator. Never- 
theless, the velocity distribution of the neutrons is found 
to be very nearly Maxwellian up to energies of about 
5ksT (Westcott, 1955) and the effective neutron 
temperature in a heavy-water reactor is typically 10 to 
30K higher than the temperature of the moderator 
(Johansson, Lampa & Sj6strand, 1961; Bigham, 
Chidley & Turner, 1961). Thus,f(2) is well represented 
by expression (28) for wavelengths 2 > 2T/51/2. In the 
short-wavelength (epithermal) region, where the neu- 

trons are still slowing down, the incident-neutron flux is 
inversely proportional to the energy (Fermi, 1936) so 
that 

f(2) = constant/2, 2 < 2T/51/2, (30) 

and this is larger than would be expected on the basis of 
(28). In practice, the incident beam is often filtered to 
suppress the epithermal tail as much as possible in order 
to minimize the order contamination in the Bragg 
reflected beam. 

2.7. Real monochromators 

The above results are idealized in a number of 
important respects. Firstly, we shall assume later in this 
paper that the reflectivity can be calculated from the 
solution of the Darwin equations given in I. This 
requires a spatially homogeneous mosaic structure, 
which is usually not realized very well in actual 
monochromator crystals (Dorner, 1971; Schneider, 
1974; Freund, 1975, 1985). It also requires that the 
widths of both the crystal and the incident beam are 
effectively infinite. The effect of finite beam width on 
the reflecting properties of monochromator crystals has 
been discussed earlier (Werner & Arrott, 1965; 
Werner, Arrott, King & Kendrick, 1966). 

We shall treat the 'mosaic spread' AO as a constant, 
which it is if one uses the simple model for W(O'-O) 
given by (57) in I. More generally, the quantity AO, as 
defined by (20), is roughly proportional to the actual 
mosaic spread in the crystal but it also depends to some 
extent on the wavelength and the thickness of the 
crystal. 

We also assume an ideally collimated incident beam. 
In practice, the incident beam always has a small but 
finite angular divergence, which changes the effective 
reflectivity of the crystal. Methods of correcting for 
this effect have been discussed by Dietrich & Als- 
Neilsen (1965) and by Popovici, Gheorghiu & Gelberg 
(1969). 

For some wavelengths, Bragg's law may be satisfied 
for two or more sets of Bragg planes simultaneously and 
the additional parasitic reflections have the effect of 
reducing the intensity of the desired reflection by 
several percent at these wavelengths (Blinowski & 
Sosnowski, 1961; Moon & Shull, 1964; Prager, 1971). 

Finally, owing to the difficulty and expense of 
producing large single crystals with spatially homo- 
geneous microstructures, actual monochromators are 
now often made in the form of composite arrays or 
stacks of many crystals (Freund, 1975; Vogt, Passell, 
Cheung & Axe, 1994). While the various complications 
mentioned above are often important in practice, they 
can be ignored in answering the kinds of generic 
questions that concern us in the present paper. 
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3. Symmetric reflections 

We begin with a discussion of symmetric reflections 
(Fig. 1), where the Bragg planes are either parallel or 
perpendicular to the surface of the crystal. We shall 
illustrate our results with particular reference to the Si 
111 reflection. Unless stated otherwise, the calculations 
assume a crystal thickness d = 1.0cm and a mosaic 
spread ,40 -- 0.3 °. 

3.1. Bragg reflection and attenuation coefficients 

Table 1 lists the values of some quantities for a 
number of common neutron monochromator crystals. 
These quantities determine the Bragg reflection 
coefficient cr and the attenuation coefficient /z, and 
hence the reflectivity of the crystal, as discussed in 
I. For example, Fig. 2 shows the calculated values 
of cr (solid curve) and /z (dashed curve) for silicon 
as a function of wavelength. The values of cr are 
calculated at the center of the Bragg peak for the 
111 reflection and assume a mosaic spread 
,40 = 0.3 °. Fig. 3 shows the individual contributions 
of coherent inelastic scattering and absorption to the 
total attenuation coefficient for silicon. The" con- 
tribution from incoherent scattering has a constant 
value of 0.0002cm -I,  which is negligibly small on 
the scale of Fig. 3. 

For wavelengths 2 >> 1 ,~, we see in Figs. 2 and 3 
that a >>/~ and the attenuation is mainly due to 
absorption. When 2 _~ 1 A, we have cr m/x and, when 
2 << 1 A, we have cr <</z. Below 1 ,~,, the attenuation is 

Symmetric G e o m e t r y ~  

Table 1. Quantities that determine the reflecting 
properties of various neutron monochromator crystals 

a and c are the lattice constants, u 0 is the root-mean-square 
displacement of an atom perpendicular to the Bragg planes, bc the 
bound coherent scattering length, a c the bound coherent scattering 
cross section, a i the bound incoherent ~attering cross section, tr a the 
absorption cross section at 2 = 1.798A and PG denotes pyrolytic 
graphite. (1 barn = 100 fro2.) 

A1 Cu 

Structure F.c.c. F.c.c. 

(./~) 4 .0495 3.6147 5.6575 a 
c (A) 
u o (A) 0.101 0.084 0.088 
b c (fro) 3.449 7.718 8.185 
a c (barn) 1.495 7.485 8.42 
a i (barn) 0.0082 0.55 0.18 
a a (barn) 0.231 3.78 2.20 

* For displacements parallel to the c axis. 

Ge Si Be PG 

Diamond Diamond H.c.p. Hexagonal 
layer 

5.4309 2.2856 2.461 
3.5832 6.708 

0.081 0.081 0.33* 
1.1491 7.79 6.6460 
2.1633 7.63 5.550 
0.004 0.0018 0.001 
0.171 0.0076 0.00350 

mainly due to coherent inelastic scattering. This 
behavior of cr and/1, at short wavelengths is true quite 
generally and allows the use of single-crystal filters to 
remove the epithermal neutrons from the incident beam 
(Brockhouse, 1959; Sears, 1989). 

0.4 
E" 
i 0.3 

0.2 
~0~ Bragg Reflection Coefficient 

ool 
1 2 3 4 

Wavelength (A) 

Fig. 2. The Bragg reflection coefficient cr and the attenuation 
coefficient/z for silicon as a function of wavelength. The values 
of a are calculated at the center of the Bragg peak for the 111 
reflection with za0 = 0.3 °. 

Expansion Geul=,~u y , , ~  

Compression 
Fig. 1. Bragg reflection from a plane slab. Illustration of symmetric, 

expansion and compression geometries in the Bragg case. 

0.12 

0.10 

,- 0 . 0 8  

~E 
0.06 

0.04 

0.02 

000 

] Coherent Inelastic Scattering 
I ...... Absorption I 

.............. ~.>'--~ ............ 
,. . . . . . . .  I i i i - - - - ~  

0 1 2 3 4 5 

Wavelength (A) 

Fig. 3. Contributions of coherent inelastic scattering and absorption to 
the total attenuation coefficient/z for silicon. The contribution from 
incoherent scattering is negligible in silicon. 
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3.2. Peak reflectivity 

Fig. 4 shows the peak reflectivity of the Si 111 
reflection for the symmetric Bragg and Laue cases as a 
function of wavelength for a crystal thickness 
d = 1.0 cm. As 2 ~ ~'max in the Laue case, the path 
lengths of the incident and Bragg-reflected beams inside 
the crystal become infinite and the resulting attenuation 

Planes ')~max causes the reflectivity to fall rapidly to zero. 
In Figs. 5 and 6, the peak reflectivity for this A1 (111) 4.676 

reflection is shown as a function of crystal thickness for A1 (200) 4.050 
. AI (220) 2.863 

wavelengths of 1, 2, 3 and 4A. For the symmetric AI (311) 2.442 

Bragg case, we see in Fig. 5 that the reflectivity Cu(111) 4.174 
approaches a saturation value R~ as d ~ ~ and the Cu (200) 3.615 
value of R~ increases with increasing wavelength. In Cu (220) 2.556 

Cu (311) 2.180 
the symmetric Laue case (Fig. 6), the reflectivity at Ge (111) 6.533 

each wavelength increases initially with increasing Ge (220) 4.000 

thickness until it reaches a maximum value beyond Ge (311) 3.412 

which it falls slowly to zero as d ~ ~ .  The position of Ge (400) 2.829 

the maximum is the optimum thickness, which is si (111) 6.271 
Si (220) 3.840 

discussed further in §3.4. si (311) 3.275 
Table 2 lists the maximum wavelength "~max and the si (400) 2.715 

saturation refiectivity of various monochromator reflec- Be (100) 3.959 
tion planes for wavelengths 2 = 1, 2, 3 and 4 A,. For a Be (002) 3.583 

Be (101) 3.465 
given crystal, the value of R~ usually depends more Be (110) 2.286 

strongly on 2 than it does on (hkl). PG (002) 6.708 

Table 2. Maximum wavelength "~maz (a) and saturation 
reflectivity R~ of various monochromator reflection 

planes 

The values of R~ are calculated for the symmetric Bragg case from 
equation (35) in I for wavelengths 2 = 1, 2, 3 and 4A. The mosaic 
spread ,40 = 0.3 ° for all reflections. 

R~ 
1 2 3 4 

0.474 0.754 0.842 0.892 
0.447 0.740 0.839 0.934 
0.376 0.711 
0.341 0.709 
0.475 0.696 0.784 0.876 
0.449 0.682 0.789 
0.382 0.663 
0.351 0.692 
0.367 0.641 0.734 0.784 
0.397 0.675 0.781 0.969 
0.254 0.556 0.722 
0.331 0.645 
0.438 0.747 0.837 0.877 
0.469 0.775 0.870 
0.322 0.684 0.841 
0.404 0.756 
0.411 0.783 0.907 
0.619 0.880 0.954 
0.570 0.862 0.948 
0.542 0.879 
0.510 0.738 0.846 0.905 

1.0 3.3. Figure of merit 

0.8 

~ 0 . 6  

0.4 

, , f  
J 

Bragg Case 
I LaueCase I f 

~.~. 

/ /  

~ , , ~ , 

I 
I 

0.2 I 
I 
I 

0.0 , , i 
0 1 2 3 4 5 6 7 

Wavelength (A) 

Fig. 4. The peak reflectivity of the Si 111 reflection for the symmetric 
Bragg and Laue cases as a function of wavelength. The curves are 
calculated for d = 1.0 cm and ,40 = 0.3 °. 

The figure of merit M is the most important property 
of a monochromator crystal because it is this quantity 
that determines the magnitude of the reflected-neutron 
flux. Fig. 7 shows the values of M calculated from (27) 
as a function of wavelength for the Si 111 reflection in 
the symmetric Bragg and Laue cases. The cot 00 factor 
in (26) makes A2 and, hence, M vanish at the maximum 
wavelength where 00 = 90 °. 

3.4. Optimum crystal thickness 

Fig. 8 shows the optimum crystal thickness dop t of the 
Si 111 reflection for the symmetric Bragg and Laue 

1.0 0.5 

. 0.3 2 

0.4 I~ 0.2 1 

0.2 0.1 -J 

0.0 0.0 ' ' ' ] 
0.0 O.S 1.0 1.5 2.0 2.5 3.0 0.0 0.5 1.0 15 2.0 2.5 3.0 

C~sta l  Thickness (cm) Crystal Thickness (cm) 

Fig. 5. The peak reflectivity of the Si 111 reflection for the symmetric Fig. 6. The peak reflectivity of the Si 111 reflection for the symmetric 
Bragg case as a function of crystal thickness. The curves are Laue case as a function of crystal thickness. The curves are 
calculated for 2 = 1, 2, 3 and 4A with AO = 0.3 °. calculated for 2 = 1, 2, 3 and 4A with AO = 0.3 °. 
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cases as a function of wavelength. In the Bragg case, 
dop t is taken to be the thickness at which the peak 
reflectivity reaches 80% of its saturation value and, in 
the Laue case, dop t is the thickness at which the peak 
reflectivity is a maximum (see Fig. 6). Note that the 
values of dop t for the Bragg and Laue cases are roughly 
the same at 4 A but dop t is very much larger for the Laue 
case at 1/k. 

The values of dopt for various monochromator 
reflection planes are listed in Table 3 for the symmetric 
Bragg case and in Table 4 for the symmetric Laue 
case, for wavelengths 2 = 1, 2, 3 and 4 A. 

3.5. Incident and reflected neutron flux 

Fig. 9 shows the assumed incident-neutron flux as a 
function of wavelength. The dashed curve is for an 
equilibrium incident-neutron spectrum with an effective 
neutron temperature T - - 3 1 0 K  and the solid curve 
shows the result of including the epithermal tail. 
Experiments show that this tail begins rather abruptly 
at an energy of about 5ksT (Westcott, 1955). For 
simplicity, we assume that it begins at 5kBT exactly. 
According to (29), the parameter 2 r = 1.75 A at 310K. 

0.025 

v 0.020 

0.015 
"6 

0.010 
iT. 

0.005 

0.000 

Bragg Case ] 
- -  - -  Laue Case 

0.030 

1 2 3 4 5 6 

Wave leng th  (A) 

Fig. 7. The figure of merit M of the Si 111 reflection for the symmetric 
Bragg and Laue cases as a function of wavelength. The curves are 
calculated for d = 1.0 cm and A0 = 0.3 °. 

I 
8 \ Bragg Case I 

u'~ \ - -  - -  Laue Case 
I 

\ 

= 6 

E 4 \ \  
E \ 
o. \ 

0 2 

o ~ i 1 f 
1 2 3 4 5 6 

W a v e l e n g t h  (A) 

Fig. 8. The optimum crystal thickness for the Si 111 reflection in the 
symmetric Bragg and Laue cases as a function of wavelength. The 
curves are calculated for A0 = 0.3 °. 

Table 3. Optimum crystal thickness (top t (cm) for various 
monochromator reflection planes calculated from equa- 
tion (41) in I with x = 0.8for the symmetric Bragg case 

with wavelengths )t = 1, 2, 3 and 4A 

The mosaic spread A0 = 0.3 ° for all reflections. 

Planes 1 2 3 4 

AI (111) 1.006 0.945 0.681 0.404 
AI (200) 1.267 1.198 0.809 0.192 
AI (220) 2.202 2.021 
AI (311) 2.839 2.389 
Cu (111) 0.126 0.099 0.066 0.027 
Cu (200) 0.158 0.124 0.073 
Cu (220) 0.272 0.193 
Cu (311) 0.349 0.194 
Ge (111) 0.242 0.242 0.190 0.145 
Ge (220) 0.363 0.335 0.224 0.007 
Ge (311) 0.618 0.661 0.391 
Ge (400) 0.615 0.549 
Si (111) 0.983 1.039 0.820 0.608 
Si (220) 1.458 1.401 0.898 
Si (311) 2.609 2.904 1.493 
Si (400) 2.512 2.267 
Be (100) 0.217 0.253 0.184 
Be (002) 0.115 0.100 0.057 
Be (101) 0.145 0.133 0.073 
Be (110) 0.245 0.160 
PG (002) 0.056 0.048 0.040 0.033 

Hence, the incident-neutron flux is a maximum at 
2 -- 1.11 A and the epithermal tail begins at 2 = 0.78 ,~. 

Fig. 10 shows the corresponding reflected-neutron 
flux for the Si 111 reflection in the symmetric Bragg 
case. According to (22), the reflected-neutron flux is 
proportional to the product of the figure of merit and the 
incident-neutron flux. It is seen in Fig. 7 that, in the 
range 1 to 5,~ (say), the figure of merit varies rather 
slowly with wavelength. As a result, the reflected- 
neutron flux distribution in this region is roughly similar 
in shape to the incident-neutron flux. In the epithermal 
region, on the other hand, the figure of merit is 
approximately proportional to 22 and the incident- 
neutron flux is proportional to 1/2, so that the reflected- 
neutron flux varies more or less linearly with 2. 

For a liquid-hydrogen cold source with an effective 
neutron temperature T - - 2 0 K ,  we find that 

- Equilibrium Spectrum at 310 K 
~-  0.8 / I - Spectrum wi~ Epithermal Tail 

0.6 
v 

0.4 

.lO 
"cO 0.2 

0.0 
0 1 2 3 4 5 

W a v e l e n g t h  (A) 

Fig. 9. The incident-neutron flux as a function of wavelength. 
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Table 4. Optimum crystal thickness dop , (cm) for various 
monochromator reflection planes calculated from equa- 
tion (40) in I for the symmetric Laue case with 

wavelengths 2 = 1, 2, 3 and 4Jl 

The mosaic spread A0 = 0.3 ° for all reflections. 

Planes 1 2 3 4 

AI (111) 5.490 2.239 0.896 0.269 
AI (200) 5.963 2.373 0.807 0.034 
A1 (220) 7.163 2.347 
A1 (311) 7.703 1.898 
Cu (111) 0.610 0.207 0.071 0.009 
Cu (200) 0.659 0.213 0.055 
Cu (220) 0.776 0.176 
Cu (311) 0.822 0.096 
Ge (111) 1.895 0.869 0.414 0.208 
Ge (220) 1.700 0.664 0.220 0.0001 
Ge (311) 2.478 1.074 0.239 
Ge (400) 1.984 0.632 
Si (111) 7.313 3.468 1.656 0.806 
Si (220) 6.462 2.561 0.787 
Si (311) 9.930 4.298 0.719 
Si (400) 7.658 2.333 
Be (100) 1.002 0.480 0.175 
Be (002) 0.458 0.163 0.043 
Be (101) 0.565 0.206 0.048 
Be (110) 0.594 0.097 
PG (002) 0.441 0.173 0.089 0.048 

2 r = 6 .89A.  Hence,  the incident-neutron flux is a 
max imum at 2 = 4.36 A. Apart  f rom a shift to longer 
wavelengths,  the reflected-neutron flux for a cold source 
is quali tat ively similar  to that for a thermal  source. 

3.6. Order contamination 

Two examples of  order contaminat ion in silicon for 
the symmetr ic  Bragg case are illustrated in Fig. 11. The 
curves show the reflected-flux ratios for 440 /220  and 
333/111 as functions of wavelength.  In each case, the 
dashed curve is for an equil ibr ium incident-neutron 
spectrum with an effective neutron temperature of  
3 1 0 K  and the solid curve shows the result of  including 
the epi thermal  tail (see Fig. 9). Note that the second- 
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Fig. 10. The corresponding reflected-neutron flux for the Si 11l 
reflection in the symmetric Bragg case as a function of wavelength. 
The curves are calculated for d = 1.0 cm and A0 = 0.3 °. 

order reflection 222 is forbidden in a crystal  with the 
diamond structure such as silicon, so that the lowest- 
order contaminant  is 333. 

In general ,  the reflected-flux ratio for an nth-order  
contaminant  is given, according to (22), by  

(M,,/M1) f (2 /n) / f (2 ) ,  (31) 

in which M, is the figure of meri t  for the nth-order  
reflection and M1 the figure of meri t  for the p r imary  
reflection, whose wavelength is 2. The ratio of  the 
figures of meri t  in (31) varies relat ively s lowly with 
wavelength so that the behavior  of the curves in Fig. 11 
is main ly  determined by the ratio of the incident-neutron 
flux at the two wavelengths.  

4. Asymmetr i c  reflections 

We now discuss asymmetr ic  reflections (Fig. 1), where 
the Bragg planes make an angle ot with the surface of the 
crystal.  We then have the Laue case when  0 < c~ and the 
Bragg case when 0 > c~. The Fankuchen  limit (0 = or) 
occurs at the wavelength 

2 F : 2 m a  x sin c~. (32) 

We shall again illustrate our results with part icular  
reference to the Si 111 reflection. Unless  stated 
otherwise,  the calculations assume a crystal  thickness 
d - 1.0 cm and a mosaic spread A0 -- 0.3 °. 

4.1. Peak reflectivity 

Fig. 12 shows the peak reflectivity of  the Si 111 
reflections as a function of wavelength  for the 
symmetr ic  Bragg case (where ot = 0°), and for asym- 
metric reflections (with ot = 20 °) in both compression 
and expansion geometries  (see Appendix  A 1 in I for a 
discussion of these terms). For  ot -- 20 °, the Fankuchen 
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Fig. 11. Order contamination in silicon. The curves show the 
reflected-flux ratios for 440/220 and 333/111 as functions of 
wavelength. In each case, the dashed curve is for an equilibrium 
incident-neutron spectrum with an effective neutron temperature of 
310K and the solid curve shows the result of including the 
epithermal tail (Fig. 9). The curves are calculated for the symmetric 
Bragg case with d = 1.0 cm and A0 ---- 0.3 °. 
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w a v e l e n g t h  2 e - 2 . 1 4 5 , h ,  and we  have  the Laue  case 
w h e n  2 < 2 F and  the Bragg  case w h e n  2 > 2 F. 

The  peak  ref lect ivi ty  for  the Si 111 ref lec t ion in 
c o m p r e s s i o n  g e o m e t r y  is s h o w n  as a func t ion  o f  c~ in 
Fig.  13. The  curves  are ca lcula ted  for  wave l eng th s  
, , l -  1, 2, 3 and 4 ,~  as indicated.  Note  that,  as in Fig.  
12, the ref lect ivi ty  van i shes  w h e n  ).,~ = 2. As d i scussed  
in I, this b e h a v i o r  ar ises  because  the  F a n k u c h e n  factor  
ff ~ c~ w h e n  0 = o~ and 2 = ;L F, whi le  fiR < 1 a lways.  

4 .2 .  Figure of merit 

The  F a n k u c h e n  factor  ff for  the Si 111 ref lec t ion is 
s h o w n  in Fig.  14 as a func t ion  o f  w a v e l e n g t h  w h e n  
c~ - 20 °. Resul ts  are shown  for  c o m p r e s s i o n  g e o m e t r y  
(ff > 1), expans ion  g e o m e t r y  (ff < 1) and s y m m e t r i c  
g e o m e t r y  (ff --  1). No te  that,  as stated in the p r e c e d i n g  
sect ion,  for  c o m p r e s s i o n  g e o m e t r y ,  ff ~ c~ as 2 ---, 2p. 

Fig.  15 shows  the f igure o f  mer i t  M for  the Si 111 
ref lect ion as a func t ion  o f  w a v e l e n g t h  for  the s y m m e t r i c  
Bragg  case (whe re  c~ = 0 °) and for  a s y m m e t r i c  reflec- 
t ions (with  c~ = 20 °) in bo th  c o m p r e s s i o n  and expans ion  
geomet r i e s .  The  f igure o f  mer i t  for  this ref lec t ion is 
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Fig. 12. The peak reflectivity of the Si 111 reflection as a function of 
wavelength for the symmetric Bragg case (where cz = 0 °) and for 
asymmetric reflctions (with ~x = 20 °) in both compression and 
expansion geometries. The curves are calculated for d = 1.0 cm and 
,50 = 0.3 °. 

shown  as a funct ion  o f  c~ in Fig.  16 for  c o m p r e s s i o n  
g e o m e t r y .  The  curves  are ca lcula ted  for  w a v e l e n g t h s  
2 = 1, 2, 3 and 4 A as indicated.  

C o m p a r i n g  Figs.  12 and 15, we  see that  the  
ref lect ivi ty  is smal le r  for  c o m p r e s s i o n  g e o m e t r y  whi le  
the f igure o f  mer i t  (and,  hence ,  the r e f l ec ted -neu t ron  

10 , , , , 
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Fig. 14. The Fankuchen factor ff for the Si 111 reflection as a function 
of wavelength when e = 20 °. Results are shown for compression 
geometry (ff > 1), expansion geometry (9 < 1) and symmetric 
geometry (ff = 1). 
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Fig. 15. The figure of merit M for the Si 111 reflection as a function of 
wavelength for the symmetric Bragg case (where c~ = 0 °) and for 
asymmetric reflections (with ~x = 20 °) in both compression and 
expansion geometries. The curves are calculated for d = 1.0 cm and 
,50 = 0.3 o. 
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Fig. 13. The peak reflectivity for the Si 111 reflection in compression 
geometry as a function of ~x. The curves are calculated for 
2 = 1, 2, 3 and 4,~ with d = 1.0 cm and ,50 = 0.3 °. 
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Fig. 16. The figure of merit M for the Si 111 reflection in compression 
geometry as a function of a. The curves are calculated for 
2 = 1, 2, 3 and 4A with d = 1.0cm and ,50 = 0.3 °. 



flux) is larger. Furthermore, for compression geometry, 
the figure of merit is largest at the Fankuchen 
wavelength 2F where the reflectivity vanishes. The 
discontinuity in the figure of merit at 2 F is due to the 
effect of attenuation. I f  /z -- 0, this discontinuity 
vanishes, leaving only a cusp in this quantity at 2F 
(see §5.3 in I). 

4.3. Fankuchen gain 

As discussed in I, the Fankuchen gain is defined by 
the reflected-flux ratio 

G = J'(O)/J'(O), = M / M  e = f fR/R s, (33) 

where the quantities in the numerators refer to the 
situation where the Bragg planes are at an angle ot to the 
surface of the crystal and the quantities in the 
denominators refer to the corresponding symmetric 
reflection where oe = 0 and ~- = 1. 

2.0 

Fig. 17 shows the Fankuchen gain G for the Si 111 
reflection as a function of wavelength for the 
symmetric Bragg case (where c~=0°) ,  and for 
asymmetric reflections (with ot = 20 °) in both com- 
pression and expansion geometries. The gain for 
compression geometry is shown as a function of ot in 
Fig. 18, and the curves are calculated for wavelengths 
2 = 1, 2, 3 and 4 A as indicated. The discontinuity in G 
for compression geometry occurs where 2 = 2 F and 
the reflected beam is parallel to the surface of the 
crystal. Below the discontinuity, we have the Laue 
case and above it the Bragg case. It is evident that 
gains in flux of 25 to 50% or more can easily be 
achieved for a wide range of wavelengths. Note also 
that the value of G can exceed the value 2, which is 
the conventional upper limit for X-rays (see the 
discussion in §6 of I). Finally, it is seen that at each 
wavelength there is a maximum angle O~ma x such that 
G > 1 only if a < ffmax and the value of Otma x increases 
with increasing 2. 
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Fig. 17. The Fankuchen gain G for the Si 111 reflection as a function 
of wavelength for the symmetric Bragg case (where ot = 0 °) and for 
asymmetric reflections (with ~ = 20 °) in both compression and 
expansion geometries. The curves are calculated for d = 1.0 cm and 
A0 = 0.3 o. 
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Fig. 18. The Fankuchen gain G for the Si 111 reflection in 
compression geomet.~ as a function of ~. The curves are calculated 
for 2=1, 2, 3 and 4A with d = 1.0cm andA0 = 0.3 °. 
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